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Bohr–Sommerfeld quantization rules in the semiclassical
limit

George A Hagedorn† and Sam L Robinson‡
† Department of Mathematics and Center for Statistical Mechanics and Mathematical Physics,
Virginia Polytechnic Institute and State University, Blacksburg, VA 24061-0123, USA
‡ Department of Mathematics, The William Paterson University of New Jersey, Wayne, NJ
07470, USA

Abstract. We study one-dimensional quantum mechanical systems in the semiclassical limit.
We construct a lowest order quasimodeψ(h̄) for the HamiltonianH(h̄) when the energyE and
Planck’s constant ¯h satisfy the appropriate Bohr–Sommerfeld conditions. This means thatψ(h̄)

is an approximate solution of the Schrödinger equation in the sense that
‖[H(h̄)− E]ψ(h̄)‖ 6 Ch̄3/2‖ψ(h̄)‖.

It follows thatH(h̄) has some spectrum within a distanceCh̄3/2 of E. Although the result has
a long history, our time-dependent construction technique is novel and elementary.

1. Introduction

In this paper we will construct approximate eigenfunctions for the one-dimensional,
time-independent Schrödinger equation in the semiclassical limit. The history of such
constructions is as rich as that of the Schrödinger equation itself, and many of the diverse
methods for producing approximate eigenfunctions have come to be labelled ‘quasimode’
constructions. For a given potentialV (x) and the associated Schrödinger operator

H(h̄) = −h̄
2

2

d2

dx2
+ V (x)

we seek aquasi-energyE(h̄) in R and a quasimode9(h̄, x) in L2(R, dx) that satisfy
‖9(h̄, ·)‖L2(R) = O(1) ash̄↘ 0 and

‖[H(h̄)− E(h̄)]9(h̄, ·)‖L2(R) 6 Ch̄λ (1)

for λ > 1 and some sequence of positive values of ¯h converging to zero. This implies
thatH(h̄) has spectrum in the interval [E(h̄) − Ch̄λ, E(h̄) − Ch̄λ]. Under the hypotheses
we assume, the spacing between eigenvalues ofH(h̄) is O(h̄), so our construction yields
non-trivial information.

We present a novel quasimode construction based on time-dependent methods. The
Bohr–Sommerfeld quantization rules arise as a sufficient condition under which our
approximation holds. Our techniques require little more than some functional analysis, a
little ordinary differential equation (ODE) theory, and someL2 estimates. The construction
of quasimodes using coherent states has been studied by others (see [1, 2, 3] and references
therein). Some historical comments and multidimensional results can be found in [4, 5]. We
note that assumptions made in some papers, such as [4, 5], are never satisfied by non-trivial,
one-dimensional systems.

0305-4470/98/5010113+17$19.50c© 1998 IOP Publishing Ltd 10113
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Near the completion of this work we learned of the unpublished doctoral thesis of Khuat-
Duy [6] which contains ideas similar to those underlying our proof, though the techniques
and details of the presentation are different. We thank Professors Paul and Uribe for bringing
this result to our attention.

The basic idea of this paper is to construct quasimodes of the form

9(h̄, x) = C(πh̄)−1/4
∫ τ(E)

0
eit (E+ πh̄

τ(E)
)/h̄eiS(t)/h̄ϕ0(A(t), B(t), h̄, a(t), η(t), x)dt (2)

whereE satisfies the Bohr–Sommerfeld conditions. The quantitiesA(t), B(t), a(t), η(t),
andS(t) are determined by classical mechanics, and

eiS(t)/h̄ϕ0(A(t), B(t), h̄, a(t), η(t), x)

is an approximate solution to a time-dependent Schrödinger equation that is defined below.
The Bohr–Sommerfeld conditions arise in a simple, intuitive fashion as conditions on the
phase of the time-dependent wavefunction as the system propagates around a classical
periodic orbit.

1.1. Some notation and definitions

We handle a rather large class of potentials. Our assumptions on the potentialV (x) are:

(V1) V ∈ C5(R),
(V2) V is bounded from below by a constant,
(V3) |V (x)| 6 CeMx

2
for some constantsC andM,

(V4) V± = limx→±∞ V (x) ∈ R ∪ {∞}.
Under assumptions (V1), (V2) the HamiltonianH(h̄) is essentially self-adjoint on

C∞0 (R) ⊂ L2(R). The degree of smoothness in (V1) and the growth condition in (V3)
facilitate some estimates that arise in our proof. Assumption (V4) serves to simplify
the spectral information we can extract from the quasimodes. We restrict ourselves to
quasi-energies belowEmax = min{V−, V+} so our quasi-energies correspond to discrete
eigenvalues of finite multiplicity.

We assume (V1)–(V4) for the remainder of this paper. These assumptions are not
optimal: the degree of smoothness in (V1) can be relaxed to, say,V ∈ C4(R) with V (4)

uniformly Lipschitz; the growth condition in (V3) could be avoided by introducing ‘cut-
offs’; and (V4) could at least be generalized (e.g., by using the limit superior or inferior).

The semiclassical time evolution of a class of Gaussian states [7, 8] is crucial to our
proof. Given complex numbersA andB satisfying

ĀB + B̄A = 2, (3)

real numbersa andη, andh̄ > 0 we define

ϕ0(A,B, h̄, a, η, x) = (πh̄)−1/4A−1/2 exp

{
− 1

2h̄
BA−1(x − a)2+ i

h̄
η(x − a)

}
. (4)

We explicitly define the branch of the square root in this definition when necessary. The
functionϕ0 is normalized in the sense that it hasL2 norm (hereafter denoted by‖ · ‖) equal
to one.

We writeH(q, p) for the classical Hamiltonian

H(q, p) = 1
2p

2+ V (q)
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H(h̄) for the quantum Hamiltonian

H(h̄) = −h̄
2

2

d2

dx2
+ V (x)

and use the symbolH alone when the context is clear. ForE < Emax, let γ (E) denote a
single connected component of the energy surface (actually a curve)

0(E) = {(q, p) ∈ R2 : H(q, p) = E}.
We call the trajectoryγ (E) regular if its projection onto the spatial componentq avoids
the top of a potential barrier, i.e., if

q− = min{q : (q, p) ∈ γ (E)} and q+ = max{q : (q, p) ∈ γ (E)}
are distinct adjacent roots ofV (q) = E with V ′(q−) < 0 andV ′(q+) > 0. Under such
conditions, it is well known (see, e.g., [11]) that the classical motion in phase space is
periodic with a positive minimal periodτ . The periodτ depends on the initial conditions
only through the energy. For a regular trajectoryγ (E) we define the ‘action function’I by

I (E) =
∮
γ (E)

p dq.

Geometrically,I (E) is the phase space area enclosed by the trajectoryγ (E). This function
is well defined, and implicit function arguments show that, in a neighbourhood of a regular
trajectory, it is as smooth inE asV is in x. It is straightforward to show that the periodτ
of the motion confined toγ (E) is

τ(E) = ∂

∂E
I (E).

1.2. The results

We now state our main results. We assumeV satisfies assumptions (V1)–(V4) and that
γ (E) is a regular trajectory. Next, we determine time-dependent quantitiesa(t), η(t), A(t),
B(t), andS(t) from classical mechanics. When the Bohr–Sommerfeld condition

I (E) =
∮
γ (E)

p dq = 2πh̄n n ∈ Z+

is satisfied,9(h̄, x) defined by (2) is a quasimode in the sense that it satisfies∥∥∥∥[H(h̄)− (E + πh̄

τ(E)

)]
9(h̄, ·)

∥∥∥∥ = O(h̄3/2).

The precise statement is the following.

Theorem 1.SupposeV satisfies assumptions (V1)–(V4), andE < Emax. Supposeγ (E) is
a regular trajectory, and defineα(E) = τ ′(E)

2τ(E) . Let A0 andB0 be complex numbers that
satisfy (3),(a0, η0) ∈ γ (E), and leta(t), η(t), A(t), B(t), andS(t) be given by the unique
solution of the system of ODEs

ȧ(t) = η(t) (5)

η̇(t) = −V ′(a(t)) (6)

Ȧ(t) = iB(t)+ 2α(E)η(t)(V ′(a(t))A(t)+ iη(t)B(t)) (7)

Ḃ(t) = iV ′′(a(t))A(t)+ 2iα(E)V ′(a(t))(V ′(a(t))A(t)+ iη(t)B(t)) (8)

Ṡ(t) = 1
2η(t)

2− V (a(t)) (9)
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subject to the initial conditions

(a(0), η(0), A(0), B(0), S(0)) = (a0, η0, A0, B0, 0).

Then

I (E) = Eτ(E)+ S(τ(E)). (10)

We assume ¯h andE satisfy the Bohr–Sommerfeld condition

I (E) = 2πh̄n n ∈ Z+ (11)

and define

9(h̄, x) = (πh̄)−1/4

√
|θ |

2τ(E)

∫ τ(E)

0
eit (E+ πh̄

τ(E)
)/h̄eiS(t)/h̄ϕ0(A(t), B(t), h̄, a(t), η(t), x)dt (12)

whereθ denotes the conserved quantity

θ = V ′(a(t))A(t)+ iη(t)B(t)

and the branch of the square root in (4) is determined by continuity int . Then,9(h̄, x)
andE(h̄) = E + πh̄/τ(E) are a quasimode/quasi-energy pair forH(h̄), i.e.,

‖9(h̄, ·)‖ = 1+O(h̄1/2)

and there is a constantC such that∥∥∥∥[H(h̄)− (E + πh̄

τ(E)

)]
9(h̄, ·)

∥∥∥∥ 6 Ch̄3/2‖9(h̄, ·)‖. (13)

In [1], Paul and Uribe use an integral containing a certain coherent state to produce
similar results (in fact, the quasimode and quasi-energy are expanded to all orders in ¯h) for
one-dimensional Schrödinger operators having polynomial symbols. Karasëv [3] obtains
results similar to ours and to the leading terms in [1] using coherent states integrated
over arbitrary Lagrangian manifolds. De Bièvre et al [2, 9] use integration of a coherent
state along a classical trajectory to obtain approximate eigenfunctions forn-dimensional
harmonic oscillators. Our contribution lies in the ideas and methods used in the construction
of the quasimode9(h̄, x). The wavepackets used in our construction are semiclassical
approximations to the quantum evolution.

The construction detailed in theorem 1 is easily implemented numerically. Figure 1
compares the absolute square of an exact eigenfunction and our quasimode9 for the
explicitly solvable Morse potentialV (x) = (1 − e−x)2 [10]. To construct9 we took
a0 = 0, η0 = 1,A0 = B0 = 1, n = 10, and approximated all other necessary quantities using
standard numerical schemes. The value of ¯h is 0.041 3224 and the quasi-energyE + πh̄/τ
is 0.520 682. The tenth eigenvalue above the ground state for the Morse potential with this
value ofh̄ is 0.519 478.

Before proceeding with the proof of the theorem, we present the motivation and intuition
that led to our ideas.

1.3. A remark on a ‘natural’ quasimode construction

Integration of an approximate solution of the time-dependent Schrödinger equation over the
corresponding classical trajectory is a clear, natural way to attempt to construct a quasimode.
However, this naive construction based on the wavepackets of [7, 8] fails to work, except
in very special cases, such as the harmonic oscillator. Understanding this failure provides
the motivation for the construction we use.
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-1 1 2

1

Figure 1. The absolute square of a quasimode (full curve) and the corresponding exact
eigenfunction (broken curve) for the Morse potential.

The wavepackets of [7, 8] are the same as those in the theorem, except thatA(t) and
B(t) satisfy

Ȧ(t) = iB(t) (14)

Ḃ(t) = iV ′′(a(t))A(t) (15)

instead of (7) and (8). We adopt the shorthand notation

ϕ(h̄, x, t) = ϕ0(A(t), B(t), h̄, a(t), η(t), x) (16)

with A(t) andB(t) satisfying (14) and (15).
The function eiS(t)/h̄ϕ(h̄, x, t) is an asymptotic solution of the time-dependent

Schr̈odinger equation in the sense that

‖e−itH(h̄)/h̄ϕ(h̄, ·, 0)− eiS(t)/h̄ϕ(h̄, ·, t)‖ = O(h̄1/2)

and ∥∥∥∥[ih̄
∂

∂t
−H(h̄)

]
eiS(t)/h̄ϕ(h̄, ·, t)

∥∥∥∥ = O(h̄3/2)

for 0 6 t 6 τ . The first of these properties is contained in the conclusion of theorem 1.1
of [8], the second is imbedded in its proof. The branches of the square roots appearing in
ϕ are determined by continuity int .

The naive approach attempts to construct a quasimode9 ∈ L2(R, dx) by

9(h̄, x) = h̄−1/4
∫ τ(E)

0
eit (E+ πh̄

τ(E)
)/h̄eiS(t)/h̄ϕ(h̄, x, t)dt (17)

where the factor of ¯h−1/4 is inserted for purposes of normalization. This satisfies(
H(h̄)− E − πh̄

τ(E)

)
9(h̄, x)

= h̄−1/4
∫ τ(E)

0

(
H(h̄)− E − πh̄

τ(E)

)
(eit (E+ πh̄

τ(E)
)/h̄eiS(t)/h̄ϕ(h̄, x, t))dt

= ih̄3/4
∫ τ(E)

0

∂

∂t
(eit (E+ πh̄

τ(E)
)/h̄eiS(t)/h̄ϕ(h̄, x, t))dt +O(h̄5/4)

= ih̄3/4(ei(τE+πh̄+S(τ))/h̄ϕ(h̄, x, τ )− ϕ(h̄, x,0))+O(h̄5/4) (18)
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where we have writtenF(h̄, x) = G(h̄, x)+O(h̄p) when‖F(h̄, ·)−G(h̄, ·)‖ = O(h̄p).
If we could arrange forϕ(h̄, x, τ ) = eiρ(h̄,τ )/h̄ϕ(h̄, x,0) for some realρ(h̄, τ ), then the

imposition of the ‘quantization condition’

τE + S(τ)+ πh̄+ ρ(h̄, τ ) = 2nπh̄ n ∈ Z
or, its equivalent∮

γ (E)

p dq + πh̄+ ρ(h̄, τ ) = 2nπh̄ n ∈ Z

would lead to9 being a quasimode forH(h̄) because the first term in the last line of (18)
would vanish. However, we can use elementary ODE theory (see the proof of the theorem)
to show thatB(t + τ)A−1(t + τ) 6= B(t)A−1(t) for any t except in the non-generic special
case when∂τ

∂E
(E) = 0. Thus, the lack of periodicity of the solutions to (14) and (15) causes

the naive construction to fail.
Undaunted, we adopt an apparently less natural construction. We seek quasimodes for

an operatorf (H) rather thanH itself. This is not as outlandish as one might think, because
spectral mapping arguments relate the spectra ofH andf (H), and the classical trajectories
are the same for the classical HamiltoniansH and f (H). Furthermore, there is a well
known canonical transformation on phase space (the action-angle variables) that produces
dynamics with the period independent ofE near a regular trajectory. Although this function
of H may be a complicated object with which to work, we can approximate it by its Taylor
series to obtain a simpler Hamiltonian.

These ideas lead us to consider a Hamiltonian of the form

fE(H) = H + 1

2

τ ′(E)
τ(E)

(H − E)2

which is (up to an additive,E-dependent, constant and a scaling byτ(E)) the second
order Taylor expansion aboutH = E of the action variable in the well known action-angle
formalism of classical mechanics. Applying the techniques of [7, 8] to this Hamiltonian, we
obtain equations (7), (8) instead of (14), (15). The solutions to (7), (8) have the periodicity
to make the naive construction work forfE(H), i.e.,9(h̄, x) given by (12) satisfies∥∥∥∥[fE(H(h̄))− E − πh̄

τ(E)

]
9(h̄, ·)

∥∥∥∥ = O(h̄3/2)

as long as the Bohr–Sommerfeld quantization condition is satisfied. We then use spectral
mapping arguments to prove the theorem.

2. The proof of the theorem

The proof of the theorem is as follows. First, we develop the necessary classical mechanics.
Next, we prove some results on the semiclassical evolution of our Gaussian wavepackets.
Then, we construct a quasimode for the HamiltonianfE(H(h̄)). Finally, we argue that the
construction actually yields quasimodes forH(h̄).

2.1. Some classical quantities

In this section, we establish and collect some facts about classical quantities that arise from
two Hamiltonian systems. The first is the standard Newtonian system with Hamiltonian

H(q, p) = 1
2p

2+ V (q). (19)
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It is well known (see, e.g., [11]) that for any initial conditions(q0, p0) ∈ R2 the system

q̇ = ∂H

∂p
(q, p) = p (20)

ṗ = −∂H
∂q
(q, p) = −V ′(q) (21)

has a unique solution(q(q0, p0, t), p(q0, p0, t)) that satisfies

(q(q0, p0, 0), p(q0, p0, 0)) = (q0, p0).

We often drop the explicit dependence on the initial conditions for convenience, even
though much of this section is devoted to studying quantities generated by differentiation
with respect to initial conditions. We restrict attention to initial conditions(q0, p0) that are
contained in a regular trajectoryγ (H(q0, p0)). Our study of this system mainly concerns
the relations between the derivatives of the solution of (20), (21) with respect to initial
conditions evaluated at the initial time and at the period of the motion.

We are also interested in the system with HamiltonianfE(H(q, p)) where

fE(H) = H + 1

2

τ ′(E)
τ(E)

(H − E)2. (22)

Here,E is considered a parameter andτ(E) denotes the period of the solution of (20), (21)
with initial conditions(q0, p0) satisfyingH(q0, p0) = E. We introduce this Hamiltonian
because derivatives with respect to initial conditions of certain solutions of the resulting
Hamiltonian system are periodic with the same period as the orbit. This forces periodicity
on certain quasiclassical quantities (namely,A(t) andB(t)) that arise in our construction.
For the purpose of distinguishing the classical motions generated by the two Hamiltonians,
we denote by((a(a0, η0, t), η(a0, η0, t)) the solution of the Hamiltonian system arising from
(22):

ȧ = ∂

∂η
fE(H(a, η)) = f ′E(H(a, η))η (23)

η̇ = − ∂

∂a
fE(H(a, η)) = −f ′E(H(a, η))V ′(a). (24)

We note that, ifH(a0, η0) = E, then

((a(a0, η0, t), η(a0, η0, t)) = (q(a0, η0, t), p(a0, η0, t)),

i.e., the two motions are identical for all time. As mentioned before, the distinction between
these two systems is in the behaviour of the derivatives of the motions with respect to initial
conditions. It is this behaviour we now begin to document.

The existence and time differentiability of the first order partial derivatives ofq, p, a,
and η with respect to the initial conditions follows from standard ODE theory (see, e.g.,
[12]). We first concentrate on the system with Hamiltonian (19). Differentiating (20), (21)
with respect tor ∈ {q0, p0}, we see that the first order derivatives ofq andp satisfy the
system

d

dt

[ ∂q

∂r
∂p

∂r

]
= M(t)

[ ∂q

∂r
∂p

∂r

]
(25)

whereM(t) denotes the matrix

M(t) =
[

0 1
−V ′′(q(t)) 0

]
.
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A fundamental matrix for (25) is

U(t) =
[ ∂q

∂q0

∂q

∂p0
∂p

∂q0

∂p

∂p0

]
i.e., U̇ (t) = M(t)U(t) andU(0) = I . We letτ = τ(E) (whereE = H(q0, p0)) denote the
period of(q(t), p(t)), and differentiate both sides of[

q(q0, p0, t + τ)
p(q0, p0, t + τ)

]
=
[
q(q0, p0, t)

p(q0, p0, t)

]
with respect toq0 andp0 to obtain:

U(t + τ) = U(t)+ τ ′(E)
[ −V ′(q0)p(t) −p(t)p0

V ′(q(t))V ′(q0) V ′(q(t))p0

]
. (26)

We now turn our attention to the system generated by the Hamiltonian (22).
Differentiating (23), (24) with respect tor ∈ {a0, η0} and restricting toE = H(a0, η0),
we obtain

d

dt

[
∂a
∂r
∂η

∂r

]
= M(t)

[
∂a
∂r
∂η

∂r

]
+ τ

′(E)
τ(E)

∂E

∂r

[
η

−V ′(a)
]
. (27)

Using variation of parameters (and the fact that the nonhomogeneous term actually satisfies
the homogeneous part of the equation), we see that[

∂a
∂r
∂η

∂r

]
= U(t)

[ ∂a0
∂r
∂η0

∂r

]
+ t τ

′(E)
τ(E)

∂E

∂r

[
η

−V ′(a)
]
. (28)

This establishes a formula for comparing the solutions of (25) and (27):[
∂a
∂r
∂η

∂r

]
=
[ ∂q

∂r
∂p

∂r

]
+ t τ

′(E)
τ(E)

∂E

∂r

[
p

−V ′(q)
]
.

Evaluating (28) at timet + τ(E) and using (26), we see that[
∂a
∂r
(t + τ(E))

∂η

∂r
(t + τ(E))

]
=
[
∂a
∂r
(t)

∂η

∂r
(t)

]
(29)

if H(a0, η0) = E.
We now list some simple facts that we use in the next section. We first note that

equation (28) implies

η(t) = ∂a

∂a0
η0− ∂a

∂η0
V
′
(a0) (30)

V ′(a(t)) = ∂η

∂η0
V
′
(a0)− ∂η

∂a0
η0. (31)

Next, we differentiateH(a0, η0) = H(a, η) with respect toa0 andη0 to obtain

η0 = ∂η

∂η0
η(t)+ ∂a

∂η0
V
′
(a(t))

V
′
(a0) = ∂η

∂a0
η(t)+ ∂a

∂a0
V
′
(a(t)).

(32)
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2.2. The semiclassical evolution and a quasimode forfE(H(h̄))

We now turn our attention to the quantitiesA, andB that arise from the solution of (7), (8)
with E = H(a0, η0). We first note that the quantity

θ(t) = V ′(a(t))A(t)+ iη(t)B(t)

is conserved by the motion generated by (5), (8), i.e.,

θ(t) = θ ≡ V ′(a0)A0+ iη0B0.

It is easy to see that the two vectors[
A(t)

iB(t)

]
and

[ ∂a
∂a0
∂η

∂a0

]
A0+ i

[ ∂a
∂η0
∂η

∂η0

]
B0

both satisfy

d

dt
Ex(t) = M(t)Ex(t)+ τ

′(E)
τ(E)

θ

[
η

−V ′(a)
]

with Ex(0) =
[
A0

iB0

]
. So, we conclude that

A(t) = ∂a

∂a0
A0+ i

∂a

∂η0
B0

and

B(t) = ∂η

∂η0
B0− i

∂η

∂a0
A0.

From these relations and (29), we see thatA(t) andB(t) are periodic with periodτ(E).
One can easily check that

A(t)B(t)+ A(t)B(t) = A0B0+ A0B0

so, if A0 andB0 satisfy (3), then so doA(t) andB(t) for all t > 0.
To determine the phase of(A(τ))1/2 we need to show that the trajectory{A(t) : 0 6

t 6 τ } ⊂ C has winding number about the origin equal to one. To prove this, we first note
that since

A(t) = A0

[(
∂a

∂a0
− Im

(
B0

A0

)
∂a

∂η0

)
+ i

|A0|2
∂a

∂η0

]
it suffices to prove the trajectory(|A0|2( ∂a∂a0

− Im (B0
A0
) ∂a
∂η0
), ∂a

∂η0
) in R2 winds the origin

exactly once. We first consider the special case where the classical motion originates at a
turning point, say,(a0, η0) = (q−, 0). In this case, equation (30) implies

η(t) = − ∂a
∂η0

V
′
(q−).

From this, we deduce that∂a
∂η0

vanishes exactly twice, namely att = 0 and t = τ/2. At
t = 0,

|A0|2
(
∂a

∂a0
− Im

(
B0

A0

)
∂a

∂η0

)∣∣∣∣
t=0

= |A0|2 > 0

and, att = τ/2,

|A0|2
(
∂a

∂a0
− Im

(
B0

A0

)
∂a

∂η0

) ∣∣∣∣
t=τ/2
= |A0|2 ∂a

∂a0

∣∣∣∣
t=τ/2

< 0
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since equation (32), evaluated att = τ/2, states

∂a

∂a0

∣∣∣∣
t=τ/2

V
′
(q+) = V ′(q−).

From (27) and (31) evaluated att = τ/2 we find

d

dt

∂a

∂η0

∣∣∣∣
t=τ/2
= ∂η

∂η0

∣∣∣∣
t=τ/2
= V ′(q+)
V
′
(q−)

< 0

so ∂a
∂η0

changes sign att = τ/2 and the claim follows. In the general case, for arbitrary
(a0, η0) we let t∗ denote the first positive time at which the trajectory(a(t), η(t)) reaches
(q−, 0). By existence and uniqueness, we then have

A(A0, B0, a0, η0, t + t∗) = ∂a

∂a0
(q−, 0, t)A(t∗)+ i

∂a

∂η0
(q−, 0, t)B(t∗)

η(a0, η0, t + t∗) = − ∂a
∂η0

(q−, 0, t)V ′(q−)

and the result follows by using the argument for the special case. Hence, if we determine
the branch of the square root along the trajectory{A(t) : 06 t 6 τ } by continuity and use√· to denote any fixed branch, we have

[A0]1/2 =
√
A0 implies [A(τ(E))]1/2 = eiπ

√
A(τ(E)).

We note that the phase eiπ that occurs here is directly related to the Maslov index of the
orbit.

We are now nearly ready to develop the semiclassical evolution of the state
ϕ0(A,B, h̄, a, η, x) determined by the HamiltonianfE(H). We use the following result
to control the semiclassical errors (see lemma 3.3 of [13]).

Proposition 2.LetH(h̄) be a family of self-adjoint operators for ¯h > 0. Supposeψ(h̄, x, t)
is continuously differentiable int and belongs to the domain ofH(h̄) for h̄ > 0. Suppose
further thatψ(h̄, x, t) satisfies:∥∥∥∥[ih̄

∂

∂t
−H(h̄)

]
ψ(h̄, ·, t)

∥∥∥∥ = O(h̄λ)

for t ∈ [0, T ]. Then

‖e−itH(h̄)/h̄ψ(h̄, ·, 0)− ψ(h̄, ·, t)‖ = O(h̄λ−1)

for t ∈ [0, T ].

To estimate norms that arise in our proof, we rely on the following fact that is easily
established by explicit calculation or a scaling argument.

Proposition 3.If F(h̄, x) is such that

|F(h̄, x)| 6 Ch̄k(x − a)m

for some constantsC, k, and non-negative integerm, then

‖F(h̄, ·)ϕn(A,B, h̄, a, η, ·)‖ = O(h̄k+m/2). (33)

Moreover, the estimate (33) is uniform fora, η, A, andB in compact sets.
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Now, with all quantities defined as in theorem 1, we define

ϕ(h̄, x, t) = ϕ0(A(t), B(t), h̄, a(t), η(t), x)

with the branches of the square roots appearing in the definition ofϕ0 determined by
continuity in t starting with a given branch att = 0. Explicit calculation and proposition 3
show that ∥∥∥∥[ih̄

∂

∂t
− fE(H(h̄))

]
e (t)/h̄ϕ(h̄, ·, t)

∥∥∥∥ = O(h̄3/2). (34)

By proposition 2, this implies that

‖e−itfE(H(h̄))/h̄ϕ(h̄, ·, 0)− eiS(t)/h̄ϕ(h̄, ·, t)‖ = O(h̄1/2).

The argument from section 3 then shows that

9(h̄, x) = h̄−1/4
∫ τ(E)

0
eit (E+ πh̄

τ(E)
)/h̄eiS(t)/h̄ϕ(h̄, x, t)dt

satisfies[
fE(H(h̄))− E − πh̄

τ(E)

]
9(h̄, x)

= ih̄3/4(ei(τE+πh̄+S(τ))/h̄ϕ(h̄, x, τ )− ϕ(h̄, x,0))+O(h̄5/4). (35)

Using the facts in the beginning of this section we conclude

ϕ(h̄, x, τ ) = e−iπϕ(h̄, x,0)

and therefore,

ei(τE+πh̄+S(τ))/h̄ϕ(h̄, x, τ )− ϕ(h̄, x,0) = 0

if

τE + S(τ) = 2nπh̄ (36)

for some integern. This is precisely the Bohr–Sommerfeld condition (11). To see this,
note that by using time to parametrize the integral

I (E) =
∮
γ (E)

p dq

and using∂q
∂t
= p, we have

I (E) =
∫ τ(E)

0
p(t)2 dt

=
∫ τ(E)

0
(p(t)2/2+ V (q(t)) dt +

∫ τ(E)

0
(p(t)2/2− V (q(t)) dt

= Eτ(E)+ S(τ(E)).
Thus, if we restrict the values of ¯h to the sequence

h̄ ∈
{
I (E)

2πn

}
n∈Z+

we have [
fE(H(h̄))− E − πh̄

τ(E)

]
9(h̄, x) = O(h̄5/4). (37)

In the next section, we prove that the norm of9 is of order 1. Thus, (37) shows that
9 andE+πh̄/τ(E) are a quasimode/quasi-energy pair for the HamiltonianfE(H(h̄)). We
also show in the next section that the power of ¯h on the right-hand side of equation (37)
can be improved to3

2.
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2.3. The normalization of9 and an improved error estimate

In this section, we prove some estimates which allow us to show that our quasimode9 is
properly normalized and that the error in equation (37) is actually O(h̄3/2).

We need two preliminary results. We first obtain a formula for the inner product of two
Gaussians of the form (4), that is proved by explicit integration.

Proposition 4.Suppose the pairA1 andB1 satisfy (3) and the pairA2 andB2 satisfy (3).
Supposea1, η1, a2, andη2 are real, and let ¯h be positive. Then

〈ϕ0(A1, B1, h̄, a1, η1, ·), ϕ0(A2, B2, h̄, a2, η2, ·)〉

=
√

2

B2A1+ A2B1
exp

{
−A2A1(η2− η1)

2+ B2B1(a2− a1)
2

2h̄(B2A1+ A2B1)

− i
(a2− a1)(B2A1η1+ A2B1η2)

h̄(B2A1+ A2B1)

}
.

Next, we prove an estimate that concerns integrals of a type we encounter.

Proposition 5.Supposef (t, s) is a complexC2 function andg(t, s) is a complexC3

function, for t ∈ [0, T ] and s ∈ [−T/2, T /2]. Suppose there existsδ > 0, such that
Re(g(t, s)) > δs2, for t ∈ [0, T ] and s ∈ [−T/2, T /2]; g(t, 0) = 0; ∂g

∂s
(t, 0) = 0; and

∂2g

∂s2 (t, 0) = α(t) is real and positive. Then for any non-negative integern, we have∫ T

0
dt
∫ T/2

−T/2
ds f (t, s)s2ne−g(t,s)/h̄

= 1 · 3 . . . |2n− 1|
√

2πh̄n+1/2
∫ T

0
f (t, 0)α(t)−n−1/2 dt +O(h̄n+1).

Proof. On the domain of interest,|f (t, s)| is uniformly bounded by some numberC1.
Because Re g(t, s) > δs2, we have|e−g(t,s)/h̄| 6 e−δs

2/h̄. Thus,|s| > h̄γ implies

|f (t, s)s2ne−g(t,s)/h̄| 6 C1(T /2)
2ne−δ/h̄

1−2γ
.

Therefore, for anyγ < 1
2,∫ T

0
dt
∫
h̄γ <|s|6T/2

ds f (t, s)s2ne−g(t,s)/h̄ = O(h̄p)

for anyp.
So, the integral in question equals∫ T

0
dt
∫ h̄γ

−h̄γ
ds f (t, s)s2ne−g(t,s)/h̄ +O(h̄p).

Since |e−g(t,s)/h̄| 6 1, standard error estimates for first order Taylor series now show that
the integral equals∫ T

0
dt
∫ h̄γ

−h̄γ
ds (f (t,0)+ ∂f

∂s
(t, 0)s)s2ne−g(t,s)/h̄

+
∫ T

0
dt
∫ h̄γ

−h̄γ
ds

1

2

∂2f

∂s2
(t, ξ(t, s))s2n+2e−g(t,s)/h̄ (38)

for someξ(t, s) with values between 0 ands.
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Since | 12 ∂
2f

∂s2 (t, ξ(t, s))e−g(t,s)/h̄| is bounded by someC2, the second term in (38) is
bounded byC2T h̄

(2n+3)γ /(2n+3). By choosingγ sufficiently close to1
2, this can be made

O(h̄n+1).
Next, by standard Taylor series error estimates and our hypotheses ong, we have

g(t, s) = α(t)s2/2+O(s3), uniformly for t ∈ [0, T ]. Thus, |s| 6 h̄γ implies

|e−g(t,s)/h̄ − e−α(t)s
2/(2h̄)| 6 |e(α(t) s

2

2 −g(t,s))/h̄ − 1|e−α(t)s2/(2h̄)

6 C3
|s|3
h̄

e−α(t)s
2/(2h̄).

Since ∫ T

0
dt
∫ h̄γ

−h̄γ
ds

∣∣∣∣f (t, 0)+ ∂f
∂s
(t, 0)s

∣∣∣∣ |s|2n+3

h̄
e−α(t)s

2/(2h̄) 6 C4h̄
n+1

the first term in (38) equals∫ T

0
dt
∫ h̄γ

−h̄γ
ds

(
f (t, 0)+ ∂f

∂s
(t, 0)s

)
s2ne−α(t)s

2/(2h̄) +O(h̄n+1). (39)

We make an exponentially small error by extending thes integration in (39) to the whole
real line. We then explicitly compute the resultings integral to obtain∫ T

0
dt
∫ h̄γ

−h̄γ
ds f (t, s)s2ne−α(t)s

2/(2h̄)

= 1 · 3 . . . |2n− 1|
√

2πh̄n+1/2
∫ T

0
f (t, 0)α(t)−n−1/2 dt +O(h̄n+1).

This implies the proposition. �

Now, let9(h̄, x) be defined as in theorem 1:

9(h̄, x) = (πh̄)−1/4

√
|θ |

2τ(E)

∫ τ(E)

0
eit (E+ πh̄

τ(E)
)/h̄eiS(t)/h̄ϕ0(A(t), B(t), h̄, a(t), η(t), x)dt.

Proposition 6.The norm of the quasimode9(h̄, ·) satisfies

‖9(h̄, ·)‖ = 1+O(h̄1/2).

Proof. The square of the norm of the quasimode is

〈9(h̄, ·),9(h̄, ·)〉 = (πh̄)−1/2 |θ |
2τ

×
〈 ∫ τ

0
e−it2(E+ πh̄

τ
)/h̄e−iS(t2)/h̄ϕ0(A(t2), B(t2), h̄, a(t2), η(t2), x)dt2,∫ τ

0
eit1(E+ πh̄

τ
)/h̄eiS(t1)/h̄ϕ0(A(t1), B(t1), h̄, a(t1), η(t1), x)dt1

〉
= (πh̄)−1/2 |θ |

2τ

∫ τ

0

∫ τ

0
exp

{
i

[
S(t1)− S(t2)+ (t1− t2)

(
E0+ πh̄

τ

)]
/h̄

}
×〈ϕ0(A(t2), B(t2), h̄, a(t2), η(t2), ·), ϕ0(A(t1), B(t1), h̄, a(t1), η(t1), ·)〉 dt1 dt2

= (πh̄)−1/2 |θ |
2τ

∫ τ

0
dt
∫ τ/2

−τ/2
ds exp

{
i

[
S(t)− S(t + s)− s

(
E0+ πh̄

τ

)]
/h̄

}
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×
√

2

B(t)A(t + s)+ B(t + s)A(t)

× exp

{
−A(t)A(t + s)(η(t + s)− η(t))

2+ B(t)B(t + s)(a(t + s)− a(t))2
2h̄(B(t)A(t + s)+ B(t + s)A(t))

}

× exp

{
−i
(a(t)− a(t + s))(B(t)A(t + s)η(t + s)+ B(t + s)A(t)η(t))

h̄(B(t)A(t + s)+ B(t + s)A(t))

}
.

In the last step we have changed the limits of integration by exploiting periodicity int2 and
changed variables byt = t1 and s = t2 − t1. We have also used proposition 4 to evaluate
the inner product in the integrand.

We rewrite the integrand in the formf (t, s)e−g(t,s)/h̄, where

f (t, s) = e−iπs/τ

√
2

B(t)A(t + s)+ B(t + s)A(t) .

We note that Re g(t, s) > 0 andg(t, 0) = 0. Also, formula (3) impliesf (t, 0) = 1.
Making use of equations (5)–(9), we compute the second order Taylor series expansion

of g(t, s) in the variables. This is a lengthy calculation, but the result is

g(t, s) = iη(t)V ′(a(t))(1− B(t)A(t)) s
2

2
− (|A(t)|2V ′(a(t))2+ |B(t)|2η(t)2) s

2

4
+O(s3).

By using formula (3), we can rewrite this as

g(t, s) = −|A(t)V ′(a(t))+ iB(t)η(t)|2 s
2

4
+O(s3)− |θ |

2s2

4
+O(s3).

It now follows that the hypotheses of proposition 5 are satisfied. Thus, proposition 5
and an explicit integration show

‖9(h̄, ·)‖2 = 1+O(h̄1/2).

The proposition follows by taking square roots. �

We close this section with an outline of the proof that the error in the estimate (37) is
actually of order ¯h3/2. The idea is to use a variant of propositions 4 and 5 to estimate the
right side of (34) rather than bringing the norm inside the integral and using proposition 3.
Explicit calculation shows that the quantity inside the norm in equation (34) is actually[

ih̄
∂

∂t
− fE(H(h̄))

]
eiS(t)/h̄ϕ(h̄, x, t) = h̄3/2eiS(t)/h̄(f1(t)ϕ1(A(t), B(t), h̄, a(t), η(t), x)

+f3(t)ϕ3(A(t), B(t), h̄, a(t), η(t), x))+O(h̄2)

where

ϕn(A,B, h̄, a, η, x) = 2−n/2(πh̄)−n/4A−(n+1)/2Ān/2Hn(h̄
−1/2|A|−1(x − a))

× exp

{
− 1

2h̄
BA−1(x − a)2+ i

h̄
η(x − a)

}
with Hn denoting thenth Hermite polynomial andf1 andf3 given by rather complicated
expressions inA(t), B(t), a(t), η(t), V (a(t)), andV (n)(a(t)) for n = 1, 2, 3 which we do
not display here. This implies that the O(h̄5/4) term in equation (35) is

h̄5/4
∫ τ

0
eit (E+ πh̄

τ
)/h̄eiS(t)/h̄(f1ϕ1+ f3ϕ3)(t) dt +O(h̄7/4).
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We then estimate theL2 norm of the integral above using the same trick as in the proof of
proposition 6, i.e.,∥∥∥∥ ∫ τ

0
eit (E+ πh̄

τ
)/h̄eiS(t)/h̄(f1ϕ1+ f3ϕ3)(t) dt

∥∥∥∥2

=
〈 ∫ τ

0
eit2(E+ πh̄

τ
)/h̄eiS(t2)/h̄(f1ϕ1+ f3ϕ3)(t2) dt2,∫ τ

0
eit1(E+ πh̄

τ
)/h̄eiS(t1)/h̄(f1ϕ1+ f3ϕ3)(t1) dt1

〉
. (40)

We break this into four integrals inx, s = t2 − t1, and t = t1 and bring the inner products
‘inside the integrals’. We then use the following extension of proposition 4 to evaluate the
inner products.

Proposition 7.Suppose the pairA1 andB1 satisfy (3) and the pairA2 andB2 satisfy (3).
Supposea1, η1, a2, andη2 are real, and let ¯h be positive. Then

〈ϕl(A1, B1, h̄, a1, η1, ·), ϕk(A2, B2, h̄, a2, η2, ·)〉
= 1√

l!k!
2−

l+k
2 〈ϕ0(A1, B1, h̄, a1, η1, ·), ϕ0(A2, B2, h̄, a2, η2, ·)〉

×(B1A2+ A1B2)
− l+k

2

min(l,k)∑
j=0

[(
l

j

)(
k

j

)
j !4j (A2B1− A1B2)

k−j
2

×(A1B2− A2B1)
l−j

2 Hk−j

(
h̄−1/2 B1(a1− a2)− iA1(η1− η2)√

A2B1− A1B2

√
B1A2+ A1B2

)
×Hl−j

(
− h̄−1/2 B2(a1− a2)+ iA2(η1− η2)√

A1B2− A2B1

√
B1A2+ A1B2

)]
.

Proof. Induction and the properties of the Hermite polynomials establish the integral formula∫ ∞
−∞

e−ρx
2
Hm(ax + b)Hn(cx + d) dx

= √πρ− 1
2 (m+n+1)

min(m,n)∑
k=0

[(
m

k

)(
n

k

)
k!(ρ − a2)

m−k
2 (ρ − c2)

n−k
2 (2ac)k

×Hm−k
(
b

√
ρ

ρ − a2

)
Hn−k

(
d

√
ρ

ρ − c2

)]
for Re(ρ) > 0 from which the proposition follows easily by completion of the square in
the exponent and a change of variable of integration. �

This implies that the right-hand side of (40) is a sum of terms of the form

h̄−(m+n)/2
∫ τ

0
dt
∫ τ/2

−τ/2
ds f (t, s) z1(t, s)

mz2(t, s)
ne−g(t,s)/h̄ (41)

where

z1(t, s) = B(t)(a(t)− a(s + t))− iA(t)(η(t)− η(s + t))
z2(t, s) = B(s + t)(a(t)− a(s + t))+ iA(s + t)(η(t)− η(s + t))

m+n is an even integer,f (t, s) is a complexC2 function, andg(t, s) is as in proposition 6.
For anyγ < 1

2, (41) is equal to

h̄−(m+n)/2
∫ τ

0
dt
∫ h̄γ

−h̄γ
ds f (t, s)z1(t, s)

mz2(t, s)
ne−g(t,s)/h̄ +O(h̄p)
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for anyp. We make an error of order

O(h̄−(m+n)/2× h̄γ (m+n+2)) = O(h̄2γ−(1−2γ )(m+n)/2)

by replacingz1(t, s) andz2(t, s) by their Taylor series ins:

z1(t, s) = −iθs +O(s2)

z2(t, s) = iθs +O(s2)

and an exponentially small error in extending thes integration back to the interval
[−τ/2, τ/2] to obtain:

h̄−(m+n)/2
∫ τ

0
dt
∫ τ/2

−τ/2
ds f (t, s)z1(t, s)

mz2(t, s)
ne−g(t,s)/h̄

= h̄−(m+n)/2
∫ τ

0
dt
∫ τ/2

−τ/2
ds f (t, s)sm+ne−g(t,s)/h̄ +O(h̄2γ−(1−2γ )(m+n)/2).

Proposition 5 now applies with the result that∥∥∥∥ ∫ τ

0
eit (E+ πh̄

τ
)/h̄eiS(t)/h̄(f1ϕ1+ f3ϕ3) dt

∥∥∥∥ = O(h1/4)

for sufficiently largeγ , and hence the right-hand side of equation (35) is actually

ih̄3/4(ei(τE+πh̄+S(τ))/h̄ϕ(h̄, x, τ )− ϕ(h̄, x,0))+O(h̄3/2)

thus providing us with the estimate necessary to prove (13).

2.4. A quasimode for H

In this section we complete the proof of the theorem. We must establish the connection
between quasimodes for the HamiltonianfE(H(h̄)) and quasimodes for the Hamiltonian
H(h̄). We cannot establish this by use of spectral mapping arguments alone, because the
mapx 7→ fE(x) is not invertible. This complication is easily overcome, however, with the
use of the following observations.

(i) Our quasimode9 for fE(H) is also a quasimode for the Hamiltonian

gE(H) = H + 1

2

τ ′(E)
τ(E)

(H − E)2+ β(H − E)3

for arbitrary β ∈ R. This follows because the crucial estimate (34) (and hence, every
result in the preceding two sections) holds withfE(H(h̄)) replaced withgE(H(h̄)) for
arbitraryβ ∈ R.

(ii) If β > α2/3, the polynomial functionp(x) = x+αx2+βx3 onR has an inverse. This
follows by showing that, for such values ofβ, p′(x) > 0 for all x ∈ R.

Armed with these two simple observations, we now settle the question of relating
quasimodes offE(H(h̄)) (or gE(H(h̄))) to quasimodes ofH(h̄).

Proposition 8.SupposeH(h̄) is self-adjoint on a Hilbert spaceH, andE ∈ R. Suppose
g(z) = z+ α(z− E)2+ β(z− E)3, whereβ is chosen large enough so thatg(z+ E)− E
is invertible. Suppose there exists a vectorψ(h̄) ∈ H with ‖ψ(h̄)‖ = 1, such that
‖[g(H(h̄))− E]ψ(h̄)‖ 6 Ch̄λ for someλ > 0. Then there existsC ′, such that

‖[H(h̄)− E]ψ(h̄)‖ 6 C ′h̄λ.
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Proof. We defineg1 : R→ R by

g1(z) = g(z+ E)− E = z+ αz2+ βz3

and leth be its inverse function. Clearly,h is differentiable;h(0) = 0; and|h(z)| grows at
most linearly for large|z|. Thus, there existsC ′′, such that|h(z)| 6 C ′′|z| for all z ∈ R.

By the spectral theorem, there exists a unitary operatorUh̄ from H to the direct sum⊕
j L

2(R, dµh̄,j (x)), such thatUh̄H(h̄)U
−1
h̄ is multiplication byx.

Letting φh̄,j (·) denote thej th component ofUh̄ψ(h̄), we have

‖[H(h̄)− E]ψ(h̄)‖2 =
∑
j

∫
R
|x − E|2|φh̄,j (x)|2 dµh̄,j (x)

=
∑
j

∫
R
|h(g1(x − E))|2|φh̄,j (x)|2 dµh̄,j (x)

6
∑
j

∫
R
C ′′2|g1(x − E)|2|φh̄,j (x)|2 dµh̄,j (x)

= C ′′2‖g1(H(h̄)− E)ψ(h̄)‖2

= C ′′2‖[g(H(h̄))− E]ψ(h̄)‖2

6 C ′′2C2h̄2λ.

This implies the proposition withC ′ = C ′′ C. �
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