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Abstract. We study one-dimensional quantum mechanical systems in the semiclassical limit.
We construct a lowest order quasimogl€) for the HamiltonianH (%) when the energy and
Planck’s constant satisfy the appropriate Bohr—Sommerfeld conditions. This meansjt{fat
is an approximate solution of the Sdldinger equation in the sense that

ILH (®) — Ely @)1 < CR¥ 2|y ().
It follows that H () has some spectrum within a distan€&®? of E. Although the result has
a long history, our time-dependent construction technique is novel and elementary.

1. Introduction

In this paper we will construct approximate eigenfunctions for the one-dimensional,
time-independent Scbdinger equation in the semiclassical limit. The history of such
constructions is as rich as that of the Sidinger equation itself, and many of the diverse
methods for producing approximate eigenfunctions have come to be labelled ‘quasimode’
constructions. For a given potentitll(x) and the associated Sélinger operator
2 R

H(h) = T &t + Vix)
we seek aquasi-energyE(h) in R and aquasimodeW (i, x) in L?(R, dx) that satisfy
W, )llL2® = O(1) ash N\ 0 and

IlH(R) — E@]Y @, )l 2@ < CR* @

for » > 1 and some sequence of positive valuesiafonverging to zero. This implies
that H (%) has spectrum in the intervakE{h) — Ch*, E(R) — Ch*]. Under the hypotheses
we assume, the spacing between eigenvalueH @ is O(h), so our construction yields
non-trivial information.

We present a novel quasimode construction based on time-dependent methods. The
Bohr—Sommerfeld quantization rules arise as a sufficient condition under which our
approximation holds. Our techniques require little more than some functional analysis, a
little ordinary differential equation (ODE) theory, and som&estimates. The construction
of quasimodes using coherent states has been studied by others (see [1, 2, 3] and references
therein). Some historical comments and multidimensional results can be found in [4, 5]. We
note that assumptions made in some papers, such as [4, 5], are never satisfied by non-trivial,
one-dimensional systems.

0305-4470/98/5010113+17$19.500 1998 IOP Publishing Ltd 10113
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Near the completion of this work we learned of the unpublished doctoral thesis of Khuat-
Duy [6] which contains ideas similar to those underlying our proof, though the techniques
and details of the presentation are different. We thank Professors Paul and Uribe for bringing
this result to our attention.

The basic idea of this paper is to construct quasimodes of the form

WE)

Wk, x) = C(xh)~* f & EHTEMGSOM g0 (A(r), B(1). T, a(t), n(t), x) dr )
0

where E satisfies the Bohr—-Sommerfeld conditions. The quantitiés, B(z), a(t), n(t),

and S(¢) are determined by classical mechanics, and

SO 40 (A®), B(t), T, a(t), n(t), x)

is an approximate solution to a time-dependent 8dimger equation that is defined below.

The Bohr—Sommerfeld conditions arise in a simple, intuitive fashion as conditions on the
phase of the time-dependent wavefunction as the system propagates around a classical
periodic orbit.

1.1. Some notation and definitions
We handle a rather large class of potentials. Our assumptions on the potentjahre:

(V1) V € C3(R),

(V2) V is bounded from below by a constant,
(V3) |V (x)| < CeM** for some constant§ and M,
(V4) Vi = Iimx_&oo V(x) € RU{oo}.

Under assumptions (V1), (V2) the Hamiltoniaki () is essentially self-adjoint on
CP(R) C L*R). The degree of smoothness in (V1) and the growth condition in (V3)
facilitate some estimates that arise in our proof. Assumption (V4) serves to simplify
the spectral information we can extract from the quasimodes. We restrict ourselves to
guasi-energies belowt,x = min{V_, V,} so our quasi-energies correspond to discrete
eigenvalues of finite multiplicity.

We assume (V1)—(V4) for the remainder of this paper. These assumptions are not
optimal: the degree of smoothness in (V1) can be relaxed to, ay,C*(R) with V®
uniformly Lipschitz; the growth condition in (V3) could be avoided by introducing ‘cut-
offs’; and (V4) could at least be generalized (e.g., by using the limit superior or inferior).

The semiclassical time evolution of a class of Gaussian states [7, 8] is crucial to our
proof. Given complex numbers and B satisfying

AB + BA =2, (3

real numbers: andzn, ands > 0 we define
_ _ 1 i
@o(A, B,l,a,n,x) = (wh)"Y4A~Y2 exp{—E_BA_l(x —a)’+ = a)} . (4)

We explicitly define the branch of the square root in this definition when necessary. The
function ¢ is normalized in the sense that it hA% norm (hereafter denoted by ||) equal
to one.

We write H (g, p) for the classical Hamiltonian

H(q,p)=3p*+ V(g
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H (h) for the quantum Hamiltonian
72 42
2 dx?
and use the symball alone when the context is clear. FBr< Enayx let y(E) denote a
single connected component of the energy surface (actually a curve)

T(E)={(q,p) e R?: H(q, p) = E}.

We call the trajectoryy (E) regular if its projection onto the spatial componegqtavoids
the top of a potential barrier, i.e., if

g- =min{g : (¢, p) € y(E)} and g+ =maXq : (q, p) € y(E)}

are distinct adjacent roots df(¢) = E with V'(¢_) < 0 andV’(¢;) > 0. Under such
conditions, it is well known (see, e.g., [11]) that the classical motion in phase space is
periodic with a positive minimal period. The periodr depends on the initial conditions
only through the energy. For a regular trajectprge) we define the ‘action function/ by

I(E) =¢ pdg.
Y (E)

Geometrically,l (E) is the phase space area enclosed by the trajegt@Ey. This function

is well defined, and implicit function arguments show that, in a neighbourhood of a regular
trajectory, it is as smooth i asV is in x. It is straightforward to show that the peried

of the motion confined tg (E) is

HR) = — +V(x)

3
T(E) = o1 (E).

1.2. The results

We now state our main results. We assubesatisfies assumptions (V1)—(V4) and that
y(E) is a regular trajectory. Next, we determine time-dependent quantiti¢sn (¢), A(z),
B(1), and S(r) from classical mechanics. When the Bohr—Sommerfeld condition

I(E):f pdg = 2whn nezt
v (E)

is satisfied,¥ (71, x) defined by (2) is a quasimode in the sense that it satisfies

- (E+ "\ w@ | = ome
- (= g5 ) o] = o

The precise statement is the following.
Theorem 1.SupposeV satisfies assumptjons (V1)—(V4), altd< Emax. Supposey(E) is
a regular trajectory, and define(E) = 7.35. Let Ao and Bo be complex numbers that

satisfy (3),(ao, n0) € y(E), and leta(?), n(t), A(t), B(t), andS(t) be given by the unique
solution of the system of ODEs

a(t) = n(r) ®)
() = —=V'(a() (6)
A@t) =1B@0) + 2a(E)n(0)(V'(a(0) A1) + in(t) B(1)) Q)

B(1) =iV" (@) A(r) + 2ia(E)V'(a(t)) (V' (a(t))A(t) + in(t) B(t)) (8)
S@) = n®)? = V(a@®) 9)
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subject to the initial conditions
(a(0), n(0), A(0), B(0), $(0)) = (ao, no, Ao, Bo, 0).

Then

I(E) = Et(E) 4+ S(z(E)). (10)
We assumé: and E satisfy the Bohr—Sommerfeld condition

I(E) = 2nhn nelZ" (11)
and define

(E) o
W, x) = (wh) 4 /% fo g Er=m) eSOy (A(r), B(t), T, a(t), n(t), x)dr (12)

where6 denotes the conserved quantity
0 = V'(a®)A(t) +in(t)B(t)

and the branch of the square root in (4) is determined by continuity imhen, ¥ (%, x)
and E(h) = E + wh/7(E) are a quasimode/quasi-energy pair foh), i.e.,

W@, )| =1+ ORY?)

and there is a constagt such that

HE - (E+ )| wa
1= (e 555) | wor

In [1], Paul and Uribe use an integral containing a certain coherent state to produce
similar results (in fact, the quasimode and quasi-energy are expanded to all ordgferin —
one-dimensional Schdinger operators having polynomial symbols. K#ka$3] obtains
results similar to ours and to the leading terms in [1] using coherent states integrated
over arbitrary Lagrangian manifolds. De&Bre et al [2,9] use integration of a coherent
state along a classical trajectory to obtain approximate eigenfunctions-denensional
harmonic oscillators. Our contribution lies in the ideas and methods used in the construction
of the quasimodel (%, x). The wavepackets used in our construction are semiclassical
approximations to the quantum evolution.

The construction detailed in theorem 1 is easily implemented numerically. Figure 1
compares the absolute square of an exact eigenfunction and our quasiméatethe
explicitly solvable Morse potential/ (x) = (1 — € ¥)? [10]. To construct¥ we took
ao=0,n70=1, A9 = Bo = 1,n = 10, and approximated all other necessary quantities using
standard numerical schemes. The valué @ 0.041 3224 and the quasi-ener@y+ wh/t
is 0.520682. The tenth eigenvalue above the ground state for the Morse potential with this
value off is 0.519478.

Before proceeding with the proof of the theorem, we present the motivation and intuition
that led to our ideas.

< CR¥?|W (T, )|l. (13)

1.3. A remark on a ‘natural’ quasimode construction

Integration of an approximate solution of the time-dependentdiihger equation over the
corresponding classical trajectory is a clear, natural way to attempt to construct a quasimode.
However, this naive construction based on the wavepackets of [7, 8] fails to work, except
in very special cases, such as the harmonic oscillator. Understanding this failure provides
the motivation for the construction we use.
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-1 1 2

Figure 1. The absolute square of a quasimode (full curve) and the corresponding exact
eigenfunction (broken curve) for the Morse potential.

The wavepackets of [7, 8] are the same as those in the theorem, exceptthand
B(t) satisfy

A@t) =iB(@) (14)

B(1) =iV (a()A(t) (15)
instead of (7) and (8). We adopt the shorthand notation

@, x, 1) = @o(A(t), B(t), h, a(t), n(t), x) (16)

with A(z) and B(z) satisfying (14) and (15).
The function &9/, x,t) is an asymptotic solution of the time-dependent
Schibdinger equation in the sense that
e Do, -, 0) — €5 g, -, 1] = OGM?)
and

0 — | senr o~ —
H [iha - H(h)] eSOhym, -, 1| = 0R¥?)
for 0 < r < t. The first of these properties is contained in the conclusion of theorem 1.1
of [8], the second is imbedded in its proof. The branches of the square roots appearing in
¢ are determined by continuity in

The naive approach attempts to construct a quasimiodel?(R, dx) by

(E) TN G er
W, x) =E*1/4f g ETTR) RSOy J 1) dr (17)
0
where the factor ofi ™4 is inserted for purposes of normalization. This satisfies

_ ah _
(H(h) _E— ﬁ) W, x)

_ -1/4 e T h it (E+Z) /R SR,
=h HMh) — E — E G &) /" e o(h, x, 1)) dt
0 T

T(E) ) . _
— |E3/4/ %(elt(E-F%)//’LelS(I)/hw(E’ X, t)) dr + 0(55/4)
0

= @ISO G (1, x, ) — (R, x, 0) + O (18)
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where we have writtei’ (7, x) = G(h, x) + O(h”) when || F (7, -) — G(h, )| = O®?).
If we could arrange fop (7, x, ) = °® /"y (R, x, 0) for some realo (%, 7), then the
imposition of the ‘quantization condition’

TE+Sk)+ah+ ph, 1) = 2n7h ner

or, its equivalent
% pdg +7h+pth, t) = 2nwh neZr
¥ (E)

would lead to¥ being a quasimode faH (&) because the first term in the last line of (18)
would vanish. However, we can use elementary ODE theory (see the proof of the theorem)
to show thatB(r + t)A~1(t + 1) # B(t)A~(r) for anyt except in the non-generic special
case whe@—g(E) = 0. Thus, the lack of periodicity of the solutions to (14) and (15) causes
the naive construction to fail.

Undaunted, we adopt an apparently less natural construction. We seek quasimodes for
an operatorf (H) rather thanH itself. This is not as outlandish as one might think, because
spectral mapping arguments relate the spectrd @ind f (H), and the classical trajectories
are the same for the classical HamiltoniaHsand f(H). Furthermore, there is a well
known canonical transformation on phase space (the action-angle variables) that produces
dynamics with the period independent®fnear a regular trajectory. Although this function
of H may be a complicated object with which to work, we can approximate it by its Taylor
series to obtain a simpler Hamiltonian.

These ideas lead us to consider a Hamiltonian of the form

17y gy

2 1(E)

which is (up to an additive E-dependent, constant and a scaling t\%)) the second
order Taylor expansion abodt = E of the action variable in the well known action-angle
formalism of classical mechanics. Applying the techniques of [7, 8] to this Hamiltonian, we
obtain equations (7), (8) instead of (14), (15). The solutions to (7), (8) have the periodicity
to make the naive construction work fgg (H), i.e., ¥ (&, x) given by (12) satisfies

fe(H)=H +

— 0(53/2)

_ mh _
|:fE(H(h)) —E— m} W(h,-)

as long as the Bohr—Sommerfeld quantization condition is satisfied. We then use spectral
mapping arguments to prove the theorem.

2. The proof of the theorem

The proof of the theorem is as follows. First, we develop the necessary classical mechanics.
Next, we prove some results on the semiclassical evolution of our Gaussian wavepackets.
Then, we construct a quasimode for the HamiltonjariH (7)). Finally, we argue that the
construction actually yields quasimodes #3K7).

2.1. Some classical quantities

In this section, we establish and collect some facts about classical quantities that arise from
two Hamiltonian systems. The first is the standard Newtonian system with Hamiltonian

H(q.p)=3p"+ V(). (19)



Bohr—Sommerfeld rules 10119

It is well known (see, e.g., [11]) that for any initial conditiofg, po) € R? the system

OH
6}=8—(q,p)=p (20)
P
OH
p= g 4= -V'(q) (21)
q

has a unique solutioty (o, po, ), p(qo, po, t)) that satisfies

(g(qo, po, 0), p(qo, po. 0)) = (qo, po)-

We often drop the explicit dependence on the initial conditions for convenience, even
though much of this section is devoted to studying quantities generated by differentiation
with respect to initial conditions. We restrict attention to initial conditidps po) that are
contained in a regular trajectosy(H (go, po)). Our study of this system mainly concerns
the relations between the derivatives of the solution of (20), (21) with respect to initial
conditions evaluated at the initial time and at the period of the motion.
We are also interested in the system with HamiltonfatiH (¢, p)) where
17/(E) 5

fE(H)—H‘f‘Z_L_(E) (H—E)". (22)
Here, E is considered a parameter angE) denotes the period of the solution of (20), (21)
with initial conditions (go, po) satisfying H (qo, po) = E. We introduce this Hamiltonian
because derivatives with respect to initial conditions of certain solutions of the resulting
Hamiltonian system are periodic with the same period as the orbit. This forces periodicity
on certain quasiclassical quantities (namelyt) and B(t)) that arise in our construction.
For the purpose of distinguishing the classical motions generated by the two Hamiltonians,
we denote by((a(ao, no, 1), n(ag, no, t)) the solution of the Hamiltonian system arising from
(22):

0
a= %fE(H(a, n) = fp(H(a,n)n (23)

d
n= —ng(H(a, n) = —fp(H(a,n)V'(a). (24)
We note that, ifH (ag, no) = E, then

((a(ao, no, 1), n(ao, no, t)) = (g(ao, no, 1), p(ao, No, 1)),

i.e., the two motions are identical for all time. As mentioned before, the distinction between
these two systems is in the behaviour of the derivatives of the motions with respect to initial
conditions. It is this behaviour we now begin to document.
The existence and time differentiability of the first order partial derivatives, gf, a,

and n with respect to the initial conditions follows from standard ODE theory (see, e.g.,
[12]). We first concentrate on the system with Hamiltonian (19). Differentiating (20), (21)
with respect tor € {qo, po}, We see that the first order derivativesqfand p satisfy the
system

d g ot

alk]-molg] 29)
where M (1) denotes the matrix

0 1
M) = [—V”(q(t)) 0]'
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A fundamental matrix for (25) is
dq  Bq
9 d
vo =% %]
dg0  9po

e, U(t) = MU (r) andU(0) = I. We lett = t(E) (WhereE = H(qo, po)) denote the
period of (¢ (¢), p(¢)), and differentiate both sides of

[q(cIo, po,t+r)] _ [q(qo, po, t)}
p(qo, po, t + 1) p(qo; po, 1)

with respect tago and pg to obtain:

V'iig®)V'(go) V'(g(®))po

We now turn our attention to the system generated by the Hamiltonian (22).
Differentiating (23), (24) with respect te € {ag, no} and restricting toE = H (ao, 10),

we obtain
d[%7 27 T(E)IE[ g
d_t[f;—;’}_M(”[f;—;’]’Lr(E)a_r[—V%a)] (@7)

U(t+r)=U(t)+r’(E)[ ~Vigo)p® — ~p(t)po } (26)

Using variation of parameters (and the fact that the nonhomogeneous term actually satisfies
the homogeneous part of the equation), we see that

r da r da ,
ar | — 5P r(E)E[ n }
| 5 _U(Z)_%}Hr(m ar | =V | (28)

This establishes a formula for comparing the solutions of (25) and (27):

g__[g_q tr’(E)3E|: p }

El AN A0
Evaluating (28) at time + t(E) and using (26), we see that
%t +t(E)) 0]
or — or 2
[§—Z(t+r(E))} [i—fm} @9

if H(ao, no) = E.
We now list some simple facts that we use in the next section. We first note that
equation (28) implies

da da
n(t) = —no— —V (ao) (30)
dag ano
, an on
Vi(a(t)) = —V (ao) — —no. (31)
ano dag
Next, we differentiateH (ag, no) = H (a, n) with respect taig andng to obtain
an da _,
no = a—n(l) + 8_V (a(®))

, 0 0 ,
Vi = Lo(t) + V' (a()).
ap 8ao
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2.2. The semiclassical evolution and a quasimodefaiH (7))

We now turn our attention to the quantitids and B that arise from the solution of (7), (8)
with E = H (ag, n9). We first note that the quantity

0(1) = V(@) A(t) +in(t)B(t)

is conserved by the motion generated by (5), (8), i.e.,
0(t) =6 = V'(ag) Ao + inoBo.

It is easy to see that the two vectors

A(t) o [
|:|B(l‘):| and |:33_71:|A0+||:%l:|30

aao

both satisfy
d T'(E) n
—x(t) = M@)x() + mé) |:—V/(a)
with ¥(0) = [i?so } So, we conclude that
0
da 0
A(t) = —A0+ |8—"OBO
and
an 0
B(1) = WBO ~ |8—”OAO

From these relations and (29), we see thé&t) and B(¢) are periodic with period (E).
One can easily check that

A(t)B(t) + A(t)B(t) = AgBo + AoBo

so, if Ag and By satisfy (3), then so dai(z) and B(¢) for all r > 0.
To determine the phase ©¢f(7))Y? we need to show that the trajectofyi(z) : 0 <
t < 7} € C has winding number about the origin equal to one. To prove this, we first note

that since
A=A [(—8a Im (B°> _aa) 1 _aa]
= 0 - _—
dag Ao/ Ino |Aol? ano

it suffices to prove the trajectoryAq|?(2% e Im(A )3770) 8no) in R? winds the origin
exactly once. We first consider the speC|aI case where the classical motion originates at a
turning point, say{ao, no) = (¢—, 0). In this case, equation (30) implies

da _,
n(t) = 5V @)
7o
From this, we deduce thagi% vanishes exactly twice, namely at= 0 andr = /2. At

t =0,
0 B oa
dag Ao/ 9no /) |,—o

and, atr = /2,

da Bg oa
Ao — —Im [ — | —
dag Ao/ dno

|Aol> > 0

= |Aol*— <0
t=1/2 8aO 1=1/2
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since equation (32), evaluatedrat t/2, states

da , /
— Vig+) =V (g-).
t=t/2

8a0
From (27) and (31) evaluated at= t/2 we find

d da

_ On
dtano

V/
= = ﬂ <0
t=t/2 87’]0

t=t/2 - V')
SO 5—% changes sign at = 7/2 and the claim follows. In the general case, for arbitrary

(ao, no) We letr* denote the first positive time at which the trajectéayr), n(¢)) reaches
(g—, 0). By existence and uniqueness, we then have

. da 17 N
A(AOs B03a07 ’709t+t ) = _(qffov t)A(t )+I_(q77 Ov t)B(t )
dap 910

* aa !
n(ag, o, t +17) = ——(q-,0,0)V'(g-)
Mo

and the result follows by using the argument for the special case. Hence, if we determine
the branch of the square root along the trajectotyr) : 0 < ¢ < 7} by continuity and use
/- to denote any fixed branch, we have

[A0]Y? = /Ao implies  [A(z(E)]Y? = €"\/A(x(E)).

We note that the phasé”ethat occurs here is directly related to the Maslov index of the
orbit.

We are now nearly ready to develop the semiclassical evolution of the state
@o(A, B,h,a,n,x) determined by the Hamiltoniariz (H). We use the following result
to control the semiclassical errors (see lemma 3.3 of [13]).

Proposition 2.Let H (%) be a family of self-adjoint operators far> 0. Suppose) (i, x, t)
is continuously differentiable in and belongs to the domain &f (%) for # > 0. Suppose
further thaty (i, x, t) satisfies:

H [m% - H(E)] v, -, )| = O0m")

for t € [0, T]. Then
|e 1Oy @ . 0) — w@, - 1) = OR* Y
fort € [0, T].

To estimate norms that arise in our proof, we rely on the following fact that is easily
established by explicit calculation or a scaling argument.

Proposition 3.If F(#, x) is such that
|F(R, x)| < Ch*(x —a)"
for some constant€, k, and non-negative integer, then
IF (R, )a(A, B R, a,n, )l = OH"/2). (33)

Moreover, the estimate (33) is uniform far n, A, and B in compact sets.
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Now, with all quantities defined as in theorem 1, we define
@, x,t) = @o(A(t), B(t), h,a(t), n(t), x)
with the branches of the square roots appearing in the definitiopy afetermined by

continuity in¢ starting with a given branch at= 0. Explicit calculation and proposition 3
show that

= O(R%?). (34)

0 — oo
[ma - fE(H(h))} e o, -1
By proposition 2, this implies that

|e e g, -, 0) — &5 g (R -, 1)]| = OKY).
The argument from section 3 then shows that

I(E) H mh A T
W, x) = ;7*1/4/ g ETTR RSOy Jr . 1) dr
0

satisfies
_ mh _
[fE(H(h)) —E— ﬁ} W(h,x)
= iR @TETTHSOV Ry x 1) — o, x, 0)) + ORY*). (35)

Using the facts in the beginning of this section we conclude
o, x,7) =€ "o, x,0)

and therefore,
gdEEHTRESOV/h oy x 1) — o, x,0) =0

TE + S(t) = 2nwh (36)

for some integen. This is precisely the Bohr—Sommerfeld condition (11). To see this,
note that by using time to parametrize the integral

Y (E)

and using%! = p, we have

T(E)
I(E) =/ p()?dr
0

T(E)

T(E)
= /0 (p()2/24 V(q (1)) df + /0 (p(1)?/2—V(g@t)) dt

= Et(E) + S(z(E)).
Thus, if we restrict the values @f o the sequence

_(I(E)
"e { 2mn }nGZJr

[fE(H(TZ)) - E- ”—E} Y@, x) = OF™). (37)
7(E)

In the next section, we prove that the normWbfis of order 1. Thus, (37) shows that
¥ andE + /Tt (E) are a quasimode/quasi-energy pair for the HamiltorfigtH (7)). We
also show in the next section that the powerzobn the right-hand side of equation (37)
can be improved tG.

we have
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2.3. The normalization ot and an improved error estimate

In this section, we prove some estimates which allow us to show that our quasithade
properly normalized and that the error in equation (37) is actuai?®).

We need two preliminary results. We first obtain a formula for the inner product of two
Gaussians of the form (4), that is proved by explicit integration.

Proposition 4.Suppose the paid; and B; satisfy (3) and the paid, and B, satisfy (3).
Supposeus, 11, ap, andn, are real, and lek be positive. Then

((PO(AL B:L’ ﬁv az, N1, ')’ (pO(AZ’ BZv }_17 az, 12, '))

— 2 expl — A2A1(12 — n1)* + BaBi(az — a1)®
ByA1+ A2B 2h(B2A1 + AyBy)

i (a2 — a1)(B2A1n1 + A2Bin2)
h(B2A1 + A2B1) '

Next, we prove an estimate that concerns integrals of a type we encounter.

Proposition 5.Supposef(z, s) is a complexC? function andg(z, s) is a complexC?
function, forr € [0,T] ands € [-T/2,T/2]. Suppose there exists > 0, such that
Re(g(t,s)) > 85, fort € [0,T] ands € [-T/2,T/2]; g(t,0) = O; 3—g(t,0) = 0; and

s

0% (t,0) = a(r) is real and positive. Then for any non-negative integewe have

952

T 72 B
/ dt/ ds £(z, s)s? e 8@/h
0 —

T/2

T
=1-3...12n -1 Jan+l/2f £, 0a()™"Y2dr + O@" Y.
0

Proof. On the domain of interest,f (¢, s)| is uniformly bounded by some numbér;.
Because Re(@, ) > 5§, we have|e /i < e¥*" Thus,|s| > k" implies
£ (2, 5)s2e 80 < Oy (T/2)2e Y

Therefore, for any < 1,

T _
/ dr / ds f(r,s)s?e 809 = ORP)
0 R <|s|<T/2

for any p.
So, the integral in question equals

T B B
/ dr ds f(t, s)s2e 8" L OMP).
A _

_R

Since|e 8®9/h| < 1, standard error estimates for first order Taylor series now show that
the integral equals

"a " of )
/ dr ds (f(t,0) + =—(t, O)S)s%efg(z,s)/h
0 R as

T h 2f _
+ / dr | ds 5= (1, E(1,8))s7 e s (38)
0 N

_hV
for someé (¢, s) with values between 0 and
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Since|%§T§(t,§(t,s))e‘g<’~s)/ﬁ| is bounded by som&,, the second term in (38) is
bounded byC,TR*+37 /(2n + 3). By choosingy sufficiently close to}, this can be made
O(EnJrl).

Next, by standard Taylor series error estimates and our hypothesgs we have
g(t, s) = a(t)s?/2 + O(s3), uniformly for ¢ € [0, T]. Thus,|s| <&’ implies

|e—g(t,s}/l7 _ —a(t)sz/(ZiT)| < |e(a(t)§—g(t,s))/l7 _ 1|e—a(t)s2/(2f7)

IsI® —or(1)s2/(2h)
< C3Te .

Since

o of E R .
/ dt/ ds f(t,O)—l——(t,O)s‘?e“(m 1@ Lt
0 —nY as h

the first term in (38) equals

T hY
/ dt / ds ( f(t,0) + %(r,%) s2e O/ | oY), (39)
0 —hY

We make an exponentially small error by extending ¢hategration in (39) to the whole
real line. We then explicitly compute the resultingntegral to obtain

T 114
/ dr ds f(t, s)szne_“(')‘vz/(z}‘—)
0 _

—hY
T
=1-3...[2n - 1w2m+1/2/ [, 0@ "2 dr + OR" ).
0

This implies the proposition. O

Now, let W (%, x) be defined as in theorem 1:

T(E) H wh T i T —
W, x) = (rrﬁ)—l/“,/z'l f I EHTR RSO0 (A(r), B(1), T, a(t), (1), x) ok,
T(E) Jo

Proposition 6.The norm of the quasimod& (%, -) satisfies

W@, )| =14+ OGY?).

Proof. The square of the norm of the quasimode is

W) W) = eyl
2t

T T — . —
x< [ e 2B hemiS@/h g (A(1), B(t), F, alty), (L), x) dia,
0

/ g ET DRGSRy (A1), B(ty), B, alty), 1(ty), x) dr1>
0

_o-12101 T . _ _ n_ﬁ _
= (mh) 5 expyl|S(t) — S(r2) + (1 —12) | Eo+ /h
T Jo Jo T

x(po(A(t2), B(t2), I, a(t2), n(t2). ), 9o(A(t1), B(t1), I, a(ty), n(t1), ) dry dt2

T /2 N
= (n;_l)*m@/ dt/ ds exp{i [S(t) —St+s)—s (Eo + ﬂ)] /ﬁ}
2t Jo /2 T
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2
X\/B(t)A(t T+ 5)+ Bt +5)A®)

«expl - ADAC+ D0 +5) - n(1))? + BW)B(t +5)(a(t +5) — a(n)®
2H(B()A(t +5) + B(t + A1)
«expl —i (a(t) —a(t + $)(B@)A{ +5)n(t +5) + B(t + ) A()n(1))
RBMA( +5) + B(t +$)A®) '

In the last step we have changed the limits of integration by exploiting periodicipyand
changed variables by=#, ands =, — r;. We have also used proposition 4 to evaluate
the inner product in the integrand.

We rewrite the integrand in the forrfi(z, s)e ¢©9/% where

f(t, S) — eins/r\/ 2

B()A( +9) + Bt + A1)

We note that Re@, s) > 0 andg(¢, 0) = 0. Also, formula (3) impliesf (¢, 0) = 1.
Making use of equations (5)—(9), we compute the second order Taylor series expansion
of g(¢, s) in the variables. This is a lengthy calculation, but the result is
2 2

g(t,s) =inV'@)(1 - Ba)m)% — (JAMPV (a()* + |B<z>|2n(t>2>sz + O(s3).
By using formula (3), we can rewrite this as

2 2.2
§(.9) = ~IAOV' @) +IBONO P + 0% - % + 06,

It now follows that the hypotheses of proposition 5 are satisfied. Thus, proposition 5
and an explicit integration show

1@, )II? = 1+ OG?).
The proposition follows by taking square roots. |
We close this section with an outline of the proof that the error in the estimate (37) is
actually of order:¥2. The idea is to use a variant of propositions 4 and 5 to estimate the

right side of (34) rather than bringing the norm inside the integral and using proposition 3.
Explicit calculation shows that the quantity inside the norm in equation (34) is actually

[iﬁ% — fE(H(F»} 5OhgW, x, 1) = R¥25OVR(£1(1)@1 (A1), B(t), ], a(t), n(1), x)

+f3(Oes(A®), B(1), T, a(t), (1), x)) + OG?)
where
on(A, B, lt,a,n,x) = 272(ah)™AA~ D2 402 g (Y21 A1 x — @)
x exp{—i_BA—l(x —a)’+ i:r)(x - a)}
2h R

with H,, denoting thenth Hermite polynomial andf, and f3 given by rather complicated
expressions im(t), B(t), a(t), n(t), V(a(t)), andV™(a(t)) for n = 1, 2, 3 which we do
not display here. This implies that the®#) term in equation (35) is

4 [ ERESO (fugn 4 )1 1 + O
0
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We then estimate th&? norm of the integral above using the same trick as in the proof of
proposition 6, i.e.,

T . . . _ 2 T . . . _
| [ e i g+ g = ([ gy + ) i
0 0

/ dnEHTRSOA( o 4 fane) (17) dt1>- (40)
0

We break this into four integrals im, s = t, — t;, andt = ¢, and bring the inner products
‘inside the integrals’. We then use the following extension of proposition 4 to evaluate the
inner products.

Proposition 7.Suppose the paid; and B; satisfy (3) and the paid, and B, satisfy (3).
Supposeauy, n1, az, andn, are real, and lek be positive. Then

(@i1(A1, B, h, a1, m, -), ok (A2, B, l, az, m2, +))

1 _ _
= ﬁzf% (9o(A1, By, h, a1, n1, ), po(Az, B2, h, az, 12, -))
o o i min(Z,k) l k o
x(BiAz+ A1Bp) 7 Y [(J) (j)jmf(AzBl —A1By) 7

=0

., _ Bi(ar — ap) —iA1(n1 —
X(Ale—AzBl)lz/Hk—j<h_l/2 ten — ap) 1 Astm — o) )

VA;3By — A1Byy/BiAs + A1 By

XHl—j( _ }—171/2 By(ay — ap) + iA_Z(nl _E) ):|
~A1By — A3B1v B1As> + A1B)

Proof. Induction and the properties of the Hermite polynomials establish the integral formula

/ e " H, (ax + b)H, (cx + d) dx

o0

min(m,n) : ~
— ﬁp—%(m+n+1) Z |:(nk1> <Z>k| (o — aZ)Lgl‘ (o — CZ)% (ZCZC)k
k=0

XI‘Im,/< b p ank d p
p — a? p—c?

for Re(p) > 0 from which the proposition follows easily by completion of the square in
the exponent and a change of variable of integration. O

This implies that the right-hand side of (40) is a sum of terms of the form

T /2 -~
i/ / dr / ds f(z,5) z2(t, )" 2a(t, 5)"€ 8" (41)
0 —1/2
where
21(t, 8) = B(t)(a(t) — a(s + 1)) —iA@) (1) — (s + 1))
22(t,8) = B(s + 1)(a(t) —a(s + 1)) +iA(s +1)(n(t) — n(s + 1))

m+n is an even integerf (¢, s) is a complexC? function, andg(z, s) is as in proposition 6.
For anyy < 3, (41) is equal to
T g _
J iz / de [ ds f(r,9)z1(, 8)" 222, 5)"€ 5" 4 ORP)
0 —R
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for any p. We make an error of order
O(Ef(m+n)/2 > Ey(m+n+2)) — O(EZy—(172y)(m+n)/2)

by replacingzi(z, s) andzz(t, s) by their Taylor series in:

z1(t, s) = —ifs + O(s?)
2(t,5) = ifs + O(s?)

and an exponentially small error in extending theintegration back to the interval
[—7/2, 7/2] to obtain:

T /2 _
fmmam/2 / dr / ds f(t, s)za(t, s)"za(t, s)"e 8@/h
0 —1/2
T /2 B
_ fmimy2 / & / ds F(r. 5)s" e et | QR2r—(-2nmmtn/2)
0 —1/2

Proposition 5 now applies with the result that

. S
‘ / gl EVDRGSOM( 0 4 fas) dt
0

for sufficiently largey, and hence the right-hand side of equation (35) is actually
inS/ 4@ EHTESOR G| x, 1) — (T, x, 0)) + ORY/?)

= O(h**)

thus providing us with the estimate necessary to prove (13).

2.4. A quasimode for H

In this section we complete the proof of the theorem. We must establish the connection
between quasimodes for the Hamiltonigp(H (7)) and quasimodes for the Hamiltonian
H(h). We cannot establish this by use of spectral mapping arguments alone, because the
mapx — fe(x) is not invertible. This complication is easily overcome, however, with the
use of the following observations.

(i) Our quasimodeV for fz(H) is also a quasimode for the Hamiltonian

0 — 17/(E)
ge(H)=H + > 7(E)
for arbitrary g € R. This follows because the crucial estimate (34) (and hence, every
result in the preceding two sections) holds wjth(H (%)) replaced withgg (H (R)) for
arbitrary 8 € R.
(i) If B > «?/3, the polynomial functiorp(x) = x +ax?+ Bx% onR has an inverse. This
follows by showing that, for such values gf p’(x) > 0 for all x € R.

(H—E)?+B(H —E)®

Armed with these two simple observations, we now settle the question of relating
quasimodes offz (H (h)) (or gg(H (R))) to quasimodes off (7).

Proposition 8.SupposeH (%) is self-adjoint on a Hilbert spack, and E € R. Suppose
g(z) =z+a(z — E)*> + B(z — E)®, wherep is chosen large enough so that + E) — E
is invertible. Suppose there exists a vecibth) € H with || (k)| = 1, such that
I[g(H ) — E]w ()| < Ch* for somex > 0. Then there exist€’, such that

IlH (®) — E]ly (W) < C'R™.



Bohr—Sommerfeld rules 10129

Proof. We defineg; : R — R by
1(z) =gz +E)—E=z+az?+82°

and leth be its inverse function. Clearly, is differentiable;z(0) = 0; and|h(z)| grows at
most linearly for larggz|. Thus, there exist€”, such thafi(z)| < C”|z| for all z € R.

By the spectral theorem, there exists a unitary oper&ofrom H to the direct sum
D, L* R, dug, ; (x)), such thatlz H () U; * is multiplication byx.

Letting ¢, ; () denote thejth component o5y (), we have

IlH R — Ely @)1 = ZfR x — E %1, ; ()| duar (%)
J
=y /1; Ih(g1(x — E)I¢r ; ()1 dua j (x)
J

<Y A " g1(x — E)Pidn; (02 dar; ()
J

= C"?|gu(HR) — E)yy(®)|?
= C"?|[g(H(R)) — Ely (®)|?
< C"PChR?,
This implies the proposition witld’ = C” C. O
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